Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JAMA Netw Open ; 6(5): e2314350, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2324070

ABSTRACT

Importance: Adherence to COVID-19 booster vaccine recommendations has lagged in pregnant and nonpregnant adult populations. One barrier to booster vaccination is uncertainty regarding the safety of booster doses among pregnant people. Objective: To evaluate whether there is an association between COVID-19 booster vaccination during pregnancy and spontaneous abortion. Design, Setting, and Participants: This observational, case-control, surveillance study evaluated people aged 16 to 49 years with pregnancies at 6 to 19 weeks' gestation at 8 health systems in the Vaccine Safety Datalink from November 1, 2021, to June 12, 2022. Spontaneous abortion cases and ongoing pregnancy controls were evaluated during consecutive surveillance periods, defined by calendar time. Exposure: Primary exposure was receipt of a third messenger RNA (mRNA) COVID-19 vaccine dose within 28 days before spontaneous abortion or index date (midpoint of surveillance period in ongoing pregnancy controls). Secondary exposures were third mRNA vaccine doses in a 42-day window or any COVID-19 booster in 28- and 42-day windows. Main Outcomes and Measures: Spontaneous abortion cases and ongoing pregnancy controls were identified from electronic health data using a validated algorithm. Cases were assigned to a single surveillance period based on pregnancy outcome date. Eligible ongoing pregnancy time was assigned to 1 or more surveillance periods as an ongoing pregnancy-period control. Generalized estimating equations were used to estimate adjusted odds ratios (AOR) with gestational age, maternal age, antenatal visits, race and ethnicity, site, and surveillance period as covariates and robust variance estimates to account for inclusion of multiple pregnancy periods per unique pregnancy. Results: Among 112 718 unique pregnancies included in the study, the mean (SD) maternal age was 30.6 (5.5) years. Pregnant individuals were Asian, non-Hispanic (15.1%); Black, non-Hispanic (7.5%); Hispanic (35.6%); White, non-Hispanic (31.2%); and of other or unknown (10.6%); and 100% were female. Across eight 28-day surveillance periods, among 270 853 ongoing pregnancy-period controls, 11 095 (4.1%) had received a third mRNA COVID-19 vaccine in a 28-day window; among 14 226 cases, 553 (3.9%) had received a third mRNA COVID-19 vaccine within 28 days of the spontaneous abortion. Receipt of a third mRNA COVID-19 vaccine was not associated with spontaneous abortion in a 28-day window (AOR, 0.94; 95% CI, 0.86-1.03). Results were consistent when using a 42-day window (AOR, 0.97; 95% CI, 0.90-1.05) and for any COVID-19 booster in a 28-day (AOR, 0.94; 95% CI, 0.86-1.02) or 42-day (AOR, 0.96; 95% CI, 0.89-1.04) exposure window. Conclusions and Relevance: In this case-control surveillance study, COVID-19 booster vaccination in pregnancy was not associated with spontaneous abortion. These findings support the safety of recommendations for COVID-19 booster vaccination, including in pregnant populations.


Subject(s)
Abortion, Spontaneous , COVID-19 , Adult , Pregnancy , Female , Humans , Male , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/etiology , COVID-19/epidemiology , COVID-19/prevention & control , Pregnancy Outcome , Maternal Age , Vaccination/adverse effects
2.
Am J Epidemiol ; 2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2285347

ABSTRACT

In the Vaccine Safety Datalink (VSD), we previously reported no association between COVID-19 vaccination in early pregnancy and spontaneous abortion (SAB). The current study aims to understand how time since vaccine roll-out or other methodologic factors could affect results. Using a case-control design and generalized estimating equations, we estimated the odds ratios (OR) of COVID-19 vaccination in the 28 days before a SAB or last date of the surveillance period (index date) in ongoing pregnancies and occurrence of SAB, across cumulative 4-week periods from December 2020 through June 2021. Using data from a single site, we evaluated alternate methodologic approaches: increasing the exposure window to 42 days, modifying the index date from the last day to the midpoint of the surveillance period, and constructing a cohort design with a time-dependent exposure model. A protective effect (OR 0.78; 95% Confidence Interval (CI): 0.69-0.89), observed with 3-cumulative periods ending March 8, 2021, was attenuated when surveillance extended to June 28, 2021 (OR: 1.02; 95% CI: 0.96-1.08). We observed a lower OR for a 42-day as compared to a 28-day window. The time-dependent model showed no association. Timing of the surveillance appears to be an important factor affecting the observed vaccine-SAB association.

3.
Teaching in Higher Education ; : 1-16, 2022.
Article in English | Academic Search Complete | ID: covidwho-1873736

ABSTRACT

The COVID-19 pandemic outbreak forced universities to immediately shift to online teaching, and the transition presented unprecedented challenges. This paper reports our findings from a collaborative autoethnography study with a special focus on the challenges we encountered and our agentive responses in teaching online. Data reveal four major challenges (1) unpredictable situations, (2) shifting teacher roles in online context, (3) issues on course design, expectations, grading, and feedback, and (4) technology issues. Also, we reported four agentive responses (1) adopting a positive attitude, (2) reexamining our teaching practices and educational goals, (3) exploring alternative pedagogical approaches, and (4) strategically implementing technology to enhance teaching and learning. These intentional reflections became opportunities for us to revisit our positionality, analyze our teaching experiences, and transform them into tools in supporting students. This study calls for more resources for professional development, as well as further conversations and collaborations among teachers and researchers. [ FROM AUTHOR] Copyright of Teaching in Higher Education is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
MMWR Morb Mortal Wkly Rep ; 71(1): 26-30, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1606176

ABSTRACT

COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Infant, Premature , Infant, Small for Gestational Age , Premature Birth/epidemiology , Adolescent , Adult , Cohort Studies , Female , Humans , Middle Aged , Patient Safety , Pregnancy , Prevalence , Retrospective Studies , Risk Assessment , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
5.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: covidwho-842254

ABSTRACT

The objective was to analyze the longitudinal distribution, epidemiological characteristics, and local prevention and control measures of coronavirus disease 2019 (COVID-19) in six cities in Henan Province, China, from 21 January 2020 to 17 June 2020: Xinyang City (including Gushi County), Nanyang City (including Dengzhou City), Zhumadian City (including Xincai County), Zhengzhou City (including Gongyi City), Puyang City, and Anyang City (including Hua County). Data were collected and analyzed through the COVID-19 information published on the official websites of the health commissions in the six selected cities of Henan Province. As of 17 June 2020, the cumulative incidence rate of COVID-19 in Henan Province was 1.33/100,000, the cumulative cure rate was 98.27%, the cumulative mortality rate was 1.73%, the age range of diagnosed cases was 5 days to 85 years old, and the male-to-female ratio was 1.09:1. The confirmed cases of COVID-19 in Henan Province were mainly imported cases from Hubei, accounting for 87.74% of all cases, of which the highest proportion was 70.50% in Zhumadian. The contact cases and local cases increased in a fluctuating manner over time. In this paper, epidemiological characteristics of COVID-19 in Henan Province were analyzed from the onset of the outbreak to the effective control within 60 days, and effective and distinctive prevention and control measures in various cities were summarized to provide a favorable useful reference for the further formulation and implementation of epidemic prevention and control and a valuable theoretical basis for effectively avoiding a second outbreak.IMPORTANCE Epidemic prevention and control in China have entered a new stage of normalization. This article analyzes the epidemiological characteristics of COVID-19 in Henan Province and summarizes the effective disease prevention and control means and measures at the prefecture level; the normalized private data provide a theoretical reference for the formulation and conduct of future prevention and control work. At the same time, these epidemic prevention and control findings can also be used for reference in other countries and regions.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Male , Middle Aged , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Urban Health/trends , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL